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Abstract
Chaotic transport is a subject of paramount importance in a variety of problems in plasma physics, specially those related to 
anomalous transport and turbulence. On the other hand, a great deal of information on chaotic transport can be obtained from 
simple dynamical systems like two-dimensional area-preserving (symplectic) maps, where powerful mathematical results 
like KAM theory are available. In this work, we review recent works on transport barriers in area-preserving maps, focus- 
ing on systems which do not obey the so-called twist property. For such systems, usual KAM theory no longer holds everywhere  
and novel dynamical features show up as non-resistive reconnection, shearless curves, and shearless bifurcations. After 
presenting some general features using a standard nontwist mapping, we consider magnetic field line maps for magnetically 
confined plasmas in tokamaks.

1 Introduction

The main goal of the study of transport in Hamiltonian sys-
tems is to characterize the motion of groups of trajectories 
from one region of phase space to another [1]. When deal-
ing with non-integrable Hamiltonian systems, the study of 
transport is complicated by the coexistence of periodic, 
quasi-periodic, and chaotic orbits [2]. In particular, chaotic 
transport is an issue of major importance in plasma physics, 
since plasma turbulence is the ultimate cause of anomalous 
transport in magnetically confined plasmas [3].

Fortunately, many features of chaotic transport observed 
in real plasmas are also present in low-dimensional systems 

like area-preserving symplectic maps [4]. If the latter satisfy 
the so-called twist condition, the celebrated KAM theorem 
warrants the existence of invariant tori with sufficiently irra-
tional rotation numbers, provided the perturbation strength 
is small enough [5]. KAM tori, or invariant curves, act as 
dikes preventing transport on large scales in phase space. As 
the perturbation strength is increased, however, these tori  
are progressively destroyed, leaving cantori as their  
remnants [6].

If, however, the twist condition does not hold everywhere in 
the phase space region of interest, usual KAM theory no longer 
applies everywhere in phase space. As a consequence, novel 
features show up that influence transport in a dramatic way. For 
example, there are shearless tori for which the rotation num-
ber has a local extreme. These shearless tori, even after their 
breakup, if the perturbation is strong enough, decrease trans-
port in such a way that it becomes an effective transport barrier 
[7]. One of the observable consequences of these barriers is 
a ratchet current, when there is a symmetry breaking [8]. We 
have recently investigated the effect of a weak dissipation in 
nontwist systems, with the formation of shearless attractors [9].

Nontwist systems appear in several problems of plasma 
physical interest, like magnetic field line structure in Tokamaks 
with reversed magnetic shear [10–12], the � × � drift motion 
of charged particles in a magnetic field [13, 14], transport by 
traveling waves in shear flows with non-monotonic velocity 
profiles [15], laser-plasma coupling [16], and magnetic field 
structure in double tearing modes [17], among others.
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The so-called standard nontwist map (SNTM), proposed 
by Morrison and del Castillo-Negrete in 1993, is considered 
a paradigm symplectic map for theoretical and computational 
investigations of nontwist systems [15]. Drift trajectories in 
Tokamaks with reversed electric shear can be reduced to the 
SNTM [13]. The SNTM is also obtained for the magnetic field 
line behavior in tokamak, when the safety factor radial profile 
of the magnetic flux surfaces is non-monotonic, having local 
extrema [18].

Effective transport barriers observed in nontwist symplectic 
maps can help to understand the formation of internal trans-
port barriers in tokamak plasmas. The latter are produced by 
modifications of the current, safety factor, or electric field pro-
files by using external heating and current drive [19] or volt-
age biasing [20]. Internal transport barriers can provide high 
tokamak confinement at modest plasma current values [21].

In this work, we aim to review recent theoretical and com-
putational works aiming to understand the formation of effec-
tive transport barriers in nontwist symplectic maps, having 
in mind applications in plasma physics problems such as the 
magnetic field line structure with reversed shear. The basic 
dynamical mechanism underlying the formation of such bar-
riers is the formation of dimerized magnetic island chains on 
both sides of the shearless curve, due to the non-monotonicity 
of the winding number profile. As the non-integrable pertur-
bation is strong enough, when these islands overlap they are  
progressively destroyed, leaving in their places internal trans-
port barriers that reduce (while not blocking all) chaotic  
transport through them.

The rest of the paper is organized as follows: In Section 
II, we review some basic properties of the standard nontwist 
map, focusing on the existence and destruction of the shearless 
curve and the formation of internal transport barriers. Section 
III considers two magnetic field line maps in tokamaks with 
nontwist properties and the consequent formation of transport 
barriers. Section IV presents the newly discovered phenom-
enon of shearless bifurcation and also the effect of reversed 
current. The last section contains our Conclusions.

2  Standard Nontwist Map

Let us consider a two-dimensional area-preserving map of the 
general form

where yn ∈ ℝ and xn ∈ [0, 1) are canonical variables. We 
require that the function f be periodic with period-1. If the 
latter vanishes everywhere in the cylindrical phase space, we 
have simply xn+1 = xn + �(yn) and the system is integrable. 

(1)yn+1 =yn − f (xn),

(2)xn+1 =xn + �(yn+1), ( mod 1),

Hence the orbits lie on curves yn = const. , along which �(yn) 
is the so-called rotation number, defined more generally as

The system (1)-(2) is a twist map, provided the condition

holds for every value of (yn, xn) along a curve in the phase 
plane. A nontwist system is such that this condition is not 
fulfilled somewhere, for example, when the derivative above 
(also called shear) crosses zero.

A two-dimensional paradigm for the study of nontwist 
systems is the so-called standard nontwist map (SNTM), for 
which f (x) = −b sin(2�x) and �(y) = a(1 − y2)[15]:

where a ∈ [0, 1) and b ∈ ℝ . The parameter b is a meas-
ure of the non-integrability of the system, and a is pro-
portional to the shear along (x,  y) curves. This map 
has for symmetry lines, namely S1 = {(x, y)|x = 1∕2} , 
S2 = {(x, y)|x = 0} , S3 = {(x, y)|x = a(1 − y2)∕2} , S4 = {(x,

y)|x = a(1 − y
2)∕2 + 1∕2} , that are useful to find periodic 

orbits of any period [22]. For example, orbits with odd 
period n on S2 are obtained by searching for points (x = 0, y) 
on S2 that are mapped to S3 or S4 after (n + 1)∕2 iterations, 
which reduces to a one-dimensional root-finding problem 
[22].

If b = 0 the SNTM is integrable and the shear is sim-
ply �� = 2ay , changing sign at y = 0 , for which the map 
is nontwist. At each side of y = 0 we have two invariant 
curves y = y0 and y = −y0 with the same rotation number for 
a given value of y0 . Switching on the perturbation ( b ≠ 0 ) 
there will appear twin chains of periodic islands with the 
same rotation number, as illustrated by Fig. 1(a), where 
a phase portrait of the SNTM is shown for a = 0.631 and 
b = 0.475 , exhibiting two twin island chains of period-5.

Moreover, we plot in Fig. 1(a) the four symmetry lines, 
and compute the rotation number (3) for 2000 points along 
the symmetry line S1 ∶ {x = 0.5,−1 ≤ y ≤ 1} , iterated until 
n = 105 [Fig. 1(b)]. The rotation number has a local max-
imum when the shear changes sign [see also the zoon in 
Fig. 1(c)], what occurs at points along the so-called shearless 
curve, represented as the red curve in Fig. 1(a), where the 
twist condition is also violated.

As the system parameters change many of the invariant 
curves are destroyed and chaotic dynamics sets in. In non-
twist systems, however, the shearless curve is remarkably 

(3)� = lim
n→∞

xn − x0

n
.

(4)
||||
𝜕xn+1

𝜕yn

|||| = |𝜔�(yn+1)| ≥ c > 0,

(5)yn+1 =yn − b sin (2�xn),

(6)xn+1 =xn + a(1 − y2
n+1

), ( mod 1),
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resilient and survives even when neighboring curves have 
disappeared. Figure 2 shows a representative example of this 
phenomenon, with phase portraits of the SNTM obtained for 
constant b and varying the parameter a. The twin period-5 
islands at both sides of the shearless curve are “dephased”, 

i.e., the elliptic point of one corresponds to a hyperbolic 
point of the other [Fig. 2(a)].

These island chains approach mutually and their sepa-
ratrix reconnect, as the parameter a changes (actually the 
reconnection affects the respective chaotic layers, since the 

Fig. 1  (color online) (a) 
Phase space of the SNTM for 
a = 0.631 and b = 0.475 . The 
shearless curve is represented in 
red, and we also display the four 
symmetry lines. (b) Rotation 
number profile along the sym-
metry line S1 ∶ x = 0.5 . (c) a 
zoom of a region of (b). The red 
star indicates the y-position of 
the shearless curve along S1

Fig. 2  (color online) Phase 
space of the SNTM for 
b = 0.475 and (a) a = 0.623 , (b) 
a = 0.631 , (c) a = 0.6986 , (d) 
a = 0.71 . The shearless curves 
are indicated by the red curves
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system is no longer integrable). A further change in a leaves 
each hyperbolic point with a homoclinic and a heteroclinic 
manifold and, in the region between the chains, new invari-
ant curves appear which are not graphs over the x-axis and 
are called meanders [Fig. 2(b)]. Changing a again causes the 
elliptic and hyperbolic points to collide and chaotic regions 
are formed, survived by the meander [Fig. 2(c)]. For increas-
ing a even the meander is destroyed, leaving a large chaotic 
region with remnants of the period-5 islands [Fig. 2(d)].

While the survival of the shearless curves (or meanders) 
is a barrier for large-scale chaotic transport, even though 
they disappear there is still an effective barrier, as illustrated 
by Fig. 3. In Fig. 3(a) and (b) we show phase portraits of 
the SNTM for b = 0.619 and a = 0.642 and 0.645, respec-
tively. In both cases, the shearless curve has disappeared 
and large-scale transport would be possible, due to a wide 
chaotic region with period-5 island remnants. We chosen 
two chaotic orbits, with points painted blue and orange, with 
initial conditions above and below, respectively, the island 
remnants. For a = 0.642 , the two chaotic orbits do not show 
signs of mixing, suggesting the presence of an internal trans-
port barrier [Fig. 3(a)], whereas for a = 0.645 the two colors 

are mixed, signaling a higher degree of chaotic transport 
[Fig. 3(b)].

We have found that the difference between these cases is 
the different configuration of the unstable manifolds stem-
ming from the Poincaré–Birkhoff fixed points associated 
with the periodic island chains on both sides of the shearless 
curve [23]. These unstable manifolds intercept at hetero-
clinic points, and if the system is nontwist, these heteroclinic 
points can connect the twin island chains, increasing the 
transport [24]. Slight variations in the system parameters, 
however, can alter qualitatively the geometry of the invariant 
manifolds and decrease the transport. This change occurs 
due to the formation of structures called turnstiles [6, 25].

Another way to regard the sudden increase in trans-
port as the parameters are varied is to consider the SNTM 
as an open dynamical system, and consider that the 
orbits in phase space can escape to plus or minus infin-
ity if they cross the lines {(x, y)|0 < x < 1, y = 1.0} or 
{(x, y)|0 < x < 1, y = −1.0} , respectively. We call the escape 
basin the set of initial conditions which produce map orbits 
escaping the system through a given exit. Figure 4, obtained 
for the same parameter values as Fig. 3, shows the escape 

Fig. 3  (color online) Phase 
space of the SNTM for 
b = 0.619 , (a) a = 0.642 , (b) 
a = 0.645

Fig. 4  (color online) b = 0.619 , 
(a) a = 0.642 , (b) a = 0.645 . 
Blue and orange pixels repre-
sent the escape basin corre-
sponding to the exit y = 1 and 
−1 , respectively. Each initial 
condition was iterated until 
n = 400
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basins of these two exits. The extent of chaotic transport 
is given by the degree in which these escape basins mix 
together. For small chaotic transport [Fig. 3(a)], this mixing 
is limited to the region neighboring the twin island chains, 
whereas for large chaotic transport, this mixing occurs 
through an unbounded region of the phase space, thanks to 
the incursive fractal fingers [Fig. 3(b)].

The sensitive dependence of the chaotic transport on 
the system parameters can be quantitatively described by 
the transmissivity, which is the fraction of map orbits that 
cross the region between the twin island chain. A numeri-
cal estimate of this quantity can be obtained by placing a 
large number ( N = 105 ) of initial conditions on the line 
{(x, y)|0 < x < 1, y = −5.0} and iterating each of them 
by 5 × 103 times. The transmissivity is the fraction of the 
orbits which reach the line {(x, y)|0 < x < 1, y = +5.0} . If 
this transmissivity is zero, there exists a transport barrier 
between the island chains, otherwise there is some degree 
of chaotic transport.

In Fig. 5, we show (in a colorbar) the transmissivity of 
the trajectories for the SNTM as a function of its parameters 
a and b. The zero transmissivity regions are painted black, 
indicating the existence of a robust transport barrier, which 
we can identify as the shearless curve (and perhaps other 
remaining tori in both sides of it). The boundary of the no-
transmissivity region has been investigated from the point 
of view of a fractal curve [26]. Low transmissivity, on the 
other hand, can be identified with an internal transport bar-
rier related to the presence of turnstiles, like in Figs. 3(a) and 
4(a). Larger values of the transmissivity are thus character-
istic of the absence of any barrier.

3  Magnetic Field Line Maps

Nontwist maps appear naturally in some problems of inter-
est in Plasma Physics, like the magnetic field line structure 
in toroidal devices like Tokamaks and Stellarators. In this 
work, we will focus on a Tokamak whose vessel has minor 
radius b and major radius R0 [Fig. 6]. The aspect ratio R0∕b 
is supposed to be large enough that we can approximate the 
tokamak by a periodic cylinder of length 2�R0 , in which 
the plasma column has a radius a < b . A field line point in 
this geometry can be identified by its cylindrical coordinates 
(r, �, z) , where 0 ≤ r < b , 0 ≤ 𝜃 < 2𝜋 , and 0 ≤ z < 2𝜋R0.

In the tokamak, magnetic field lines can be modeled 
through the following Hamiltonian structure:

Here, H is the poloidal flux, � and � correspond to the 
canonical coordinate and momentum [27, 28] and the toroi-
dal angle � = z∕R0 acts as a timelike variable.

(7)
d�

d�
= −

�H

��
,

d�

d�
=

�H

��
.

Fig. 5  (color online) Parameter plane (a vs. b) obtained from the bar-
rier transmissivity for the SNTM. We considered 105 initial conditions 
randomly placed along the line y = −5.0 , iterated until n = 5000 . The 
colorbar indicates how many of those initial conditions reach the line 
y = 5.0

Fig. 6  Schematic figure of a large aspect ratio Tokamak with chaotic 
limiter
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We can divide the Hamiltonian into two parts: H0 , which 
corresponds to the non-perturbed flux and H1 , the perturbed 
flux. Together they form H = H0 + �H1 where:

with q(�) as the safety profile. The conditions for MHD 
equilibrium imply that the magnetic field lines lie on flux 
surfaces � = const. , describing helical trajectories whose 
pitch is determined by the rotational transform �(r) = 1∕q(r).

The strength of the perturbations is given by � and H1 is 
written in terms of the following Fourier series:

with m and n as the poloidal and toroidal mode numbers and 
�m,n as their phases.

This magnetic perturbation is periodic, which allows 
for the creation of stroboscopic maps with sections at 
� = �n = (2�∕s)n , with ( n = 0,±1,±2 ) and s ≥ 1 . Taking 
( �n, �n ) as the intersection points, we can write the field 
line map as

Using � = r2∕2 as the canonical momentum [27, 28] and 
imposing that the transformation (10) be a canonical one, the 
field line map for the equilibrium part of the Hamiltonian H0 
is a two-dimensional symplectic map �1 , derived from the 
magnetic field line equations, of the form

where the parameter a1 gives the toroidal correction to the 
cylindrical approximation. We shall use a1 = −0.04 . A non-
monotonic safety factor profile for the equilibrium plasma is 
given by the expression [18]

where � , � and �� = �(� + 1)∕(� + � + 2) are equilibrium 
parameters and H(x) is the Heaviside unit-step function.

The conditions for the formation of a chaotic region in 
the Poincaré surface of section (r, �) are fulfilled if a non-
integrable magnetic perturbation sets in. One example is 
the so-called chaotic limiter, which consists in a grid of 
m pairs of wires with length � [Fig. 6], so introducing 

(8)H0(�) = ∫
d�

q(�)
,

(9)H1(� , �,�) =
∑
m,n

Hm,n(�) cos(m� − n� + �m,n),

(10)(�n+1, �n+1) = �1(�n, �n).

(11)rn+1 =
rn

1 − a1 sin(�n)
,

(12)�n+1 =�n +
2�

q(rn+1)
+ a1 cos(�n), ( mod 2�),

(13)

q(r) =
qar

2

a2

{
1 −

(
1 + ��

r2

a2

)(
1 −

r2

a2

)�+1

H(a − r)

}−1

,

a “time”(z)-dependence which breaks the integrability of 
the equilibrium with toroidal correction given by the map 
�1 . The magnetic field produced by a chaotic limiter with 
m pairs of wires yields a perturbation map �2 of the form

where C = 2m�a2∕R0qab
2 , and � = I

�
∕Ip , where I

�
 is the 

limiter current and Ip is the plasma current. The composed 
map �1◦�2 was proposed by Ullmann and Caldas in 2000 
[29, 31]. The parameter values used in the numerical simu-
lations are b = 0.21m (major radius), a = 0.18m (minor 
radius), � = 0.08m , � = 2.0 , � = 1.0 , qa = 3.9 [18].

Phase spaces of the Ullmann map for m = 3 are shown 
in Fig. 7 for different values of the perturbation strength � , 
which is proportional to the current applied at the limiter 
ring. For small values of the latter, we have the formation 
of twin dimerized islands separated by a shearless curve 
(in red) [Fig. 7(a)]. Increasing the perturbation strength 
these island chains approach each other and the shearless 
curve meanders around them [Fig. 7(b)]. Even when the 
perturbation is stronger, forming chaotic regions in both 
sides of the shearless curve, it continues to act as a trans-
port barrier [Fig. 7(c)]. Further increase in the perturba-
tion strength breaks down this barrier and allows a larger 
chaotic region with some island remnants [Fig. 7(d)].

Using the original set of canonical coordinates, another 
symplectic field line map, the tokamap, was proposed by 
Balescu et al. [30]:

The tokamap was not directly derived from the magnetic 
field line equations. However, it fits important characteris-
tics for the system, namely: (i) there are no negative values 
of � , such that �0 = 0 and �n ≥ 0 for all n; (ii) it follows a 
realistic safety factor profile q(�) [30]. Here we use the non-
monotonic profile shown in Fig. 8, given by:

with � = (1 − qm∕q0)�
−2
m

 , and �m is the minimum of q given 
by:

(14)rn+1 =r
∗
n+1

+
mC�b

m − 1

(
r∗
n+1

b

)m−1

sin(m�n+1),

(15)�∗
n+1

=�n+1 − C�

(
r∗
n+1

b

)m−2

cos(m�n+1),

(16)�n+1 =�n −
��n+1

1 + �n+1

sin(�n),

(17)�n+1 =�n +
2�

q(�n+1)
−

� cos(�k)

(1 + �k+1)
2
.

(18)q(�) =
qm

1 − �(� − �m)
2
,
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(19)�m =

⎛⎜⎜⎝
1 +

�
1 − qm∕q1

1 − qm∕q0

⎞⎟⎟⎠

−1

,

where q0 = q(0) = 3 e q1 = q(1) = 6 . With this profile, the 
mapping is also known as the revtokamap [30, 32].

In Fig. 9, we show the Poincaré section of field lines in 
(� , �)-plane for the revtokamap (16)-(17), in which the shear-
less curve is drawn in red color. The qualitative evolution is 
similar to that exhibited by the previous maps here presented.

4  Shearless Bifurcation and Reversed 
Current

In the previous section, we have seen examples of symplec-
tic field line maps, for which the existence of shearless barri-
ers is due to the non-monotonicity of the safety factor profile 
of the plasma equilibrium. However, it is possible to obtain a 
shearless transport barrier even with monotonic safety factor 
profiles, provided we are close enough to some bifurcations 
near primary resonant islands.

Dullin, Meiss, and Sterling showed, in 2000, the existence 
of a shearless torus in the neighborhood of the tripling point 
of an elliptic fixed point of a generic Hamiltonian system 
[33]. Further numerical investigations have shown the exist-
ence of shearless tori near a quadrupling bifurcation [34].

Fig. 7  (color online) Phase 
space for the Ullmann map 
�1◦�2 with m = 3 and (a) 
� = 0.03 , (b) 0.08, (c) 0.30, (d) 
0.40. The remaining parameters 
are listed in Appendix. The 
rectangular coordinates here are 
x = � and y = (b − r)∕b

Fig. 8  Non-monotonic safety factor profile of the Tokamap
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In the context of the Ullmann map, tripling and quadru-
pling bifurcations of an elliptic fixed point show up over a 
wide range of the perturbation parameter � [35]. In Fig. 10, 
we show a phase space of the Ullmann map for � = 0.189 
and m = 6 . The chaotic layer has embedded remnants of an 
island chain. In the inset we exhibit a period-5 island chain 
whose elliptic point bifurcated into a period-4 one.

In order to understand how a local shearless barrier is 
formed near the island chain undergoing a quadrupling 
bifurcation, we show in Fig. 11 the evolution of the phase 
spaces (left panels) and the corresponding rotation number 
profiles (right panels) in the neighborhood of the quadru-
pling bifurcation. Just before the latter [Fig. 11(a)] the rota-
tion number profile is monotonic, with no local extrema. 
On increasing the � parameter there happens a quadrupling 
bifurcation, through which there is a local minimum and a 
local maximum [Fig. 11(b)], and thus two shearless tori have 
been formed therein. As � is further increased, the bump in 
the rotation number profile has increased its size until the 
local maximum achieves the value � = 1∕4 yielding four 
stable fixed points, and the local minimum persists as well 
the shearless torus.

We now discuss the dynamics of plasmas with reversed 
density current profile [36]. Such phenomenon has been 
observed in tokamak experiments [37, 38] and leads to 
magnetic fields with a non-monotonic safety factor profile. 
Accordingly, we consider the non-monotonic current density 
profile Jz with a reversed current given by [36]:

where a = 0.18 m is the plasma radius, Ip = 20 kA is the 
plasma current, � = −100.5 and � = 5 . Such parameters are 
obtained from the TCABR tokamak [39]. The corresponding 
poloidal magnetic field profile is depicted in Fig. 12, and the 
resulting safety profile is given by:

where q(a) = 5.0 and �� = �(� + 1)∕(� + � + 2).
We apply this non-monotonic safety profile in the Ull-

mann map, with a1 = −0.04 . On computing the rotation 
number, we obtain Fig. 13 for a cross section at x = 0.5 . 
There is a divergence at y = 0.9225 corresponding to the 
magnetic field reversal.

The inset in Fig. 13 shows the existence of two local 
extrema (one maximum at y1 = 0.8805 and one minimum 
at y2 = 0.8965 ), corresponding each to a different shearless 
torus. Around each of these shearless curves there are twin 
island chains. In Fig. 14, we show the shearless curve arising 
at y = y2 with its corresponding twin island chains.

(20)Jz(r) =
IpR0

�a2
(� + 2)(� + 1)

� + � + 2

(
1 + �

r2

a2

)(
1 −

r2

a2

)�

,

(21)

q0(r) = q(a)
r2

a2

{
1 −

[(
1 + ��

r2

a2

)(
1 −

r2

a2

)�+1
]}

[
1 − 4

r2

R2

0

]−1∕2

.

Fig. 9  (color online) Poincare section of the revtokamap (16)-(17) for 
� = 0.35 . In red we show the shearless barrier at � = 0.4495

Fig. 10  Phase space of the Ullmann map with � = 0.1889 and m = 6 . 
The inset shows a quadrupling bifurcation

906 Brazilian Journal of Physics (2021) 51:899–909



1 3

Fig. 11  (color online) Phase 
space (left) And rotation 
number profile (right) for the 
Ullmann map with m = 6 and 
(a) � = 0.185 , (b) 0.188, (c) 
0.189
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5  Conclusions

The existence of shearless barriers in tokamaks has deep 
consequences in terms of transport properties and the 
quality of plasma confinement that can be achieved. The 
shearless barriers are basically magnetic surfaces with 
some kind of robustness against symmetry-breaking per-
turbations. The presence of shearless barriers is usually 
related to non-monotonic safety factor profiles.

A paradigm of this behavior is provided by the standard 
nontwist map of Morrison and del Castillo-Negrete. The 
shearless curve, in this case, is remarkably robust against 
the increase in a non-integrable perturbation strength. The 

location of the shearless curve is a local extremum of the 
rotation number profile, where the twist condition is vio-
lated for the map.

Even after the shearless curve has been destroyed, 
however, transport is affected by the invariant manifold 
structure in the region formerly occupied by the shearless 
curve. The breakup of the shearless curve is extremely 
sensitive to the parameter values taken by the standard 
nontwist map. The boundary (in parameter space) between 
the two situation is complicated (with fractal features).

In this paper, we show two magnetic field line maps in 
tokamaks with non-monotonic safety factor profiles. One 
of them considers a tokamak with chaotic limiter, which 
is an external arrangement of current wires designed to 
create a peripheral region of chaotic field lines near the 
tokamak wall. For both cases, the shearless tori are located 
at local extrema of the rotation number profile.

We also shown that there are cases for which a field line 
map can exhibit shearless barriers even when the safety 
factor profile is monotonic. This occurs if the map param-
eters are close to a tripling or quadrupling bifurcation, 
so creating local extrema in the corresponding rotation 
number profiles.

Finally, we consider explicitely a situation in which 
the non-monotonic safety factor profile has a well-defined 
physical reason, namely the existence of a current density 
profile with a sign reversal, a situation usually present in 
tokamak scenarios which partially explains why shearless 
barriers are so often observed.
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Fig. 12  Poloidal magnetic field radial profile

Fig. 13  Numerical safety factor profile with x = 0.5 . The inset shows 
two shearless points: a maximum at y1 = 0.8805 and a minimum at 
y2 = 0.8965

Fig. 14  Shearless curve for the Ullmann map with reversed current at 
y2 and its corresponding island chains
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